Show / Hide Table of Contents

Class Score

Contains scoring statistics for a given model.

Inheritance
System.Object
Score
Inherited Members
System.Object.Equals(System.Object)
System.Object.Equals(System.Object, System.Object)
System.Object.GetHashCode()
System.Object.GetType()
System.Object.MemberwiseClone()
System.Object.ReferenceEquals(System.Object, System.Object)
Namespace:numl.Supervised
Assembly:numl.dll
Syntax
public class Score

Constructors

View Source

Score()

Initializes a new Score object.

Declaration
public Score()

Properties

View Source

Accuracy

Gets or sets the total test accuracy as defined by the normalized distribution over true vs negative cases.

Declaration
public double Accuracy { get; set; }
Property Value
Type Description
System.Double
View Source

AUC

Gets the Area Under the Curve value for the current fixed stationary point of the Precision / Recall curve.

Declaration
public double AUC { get; }
Property Value
Type Description
System.Double
View Source

CoefRMSE

Gets or sets the Coefficient of Variation of the RMSE.

Declaration
public double CoefRMSE { get; set; }
Property Value
Type Description
System.Double
View Source

CrossEntropy

Gets or sets the cross entropy loss.

Declaration
public double CrossEntropy { get; set; }
Property Value
Type Description
System.Double
View Source

Examples

Gets or sets the total number of scored examples.

Declaration
public int Examples { get; set; }
Property Value
Type Description
System.Int32
View Source

Fallout

Gets the Fallout value of the model.

A higher value indicates the model has decreased prediction accuracy, otherwise known as the False-Positive-Rate (FPR).

Declaration
public double Fallout { get; }
Property Value
Type Description
System.Double
View Source

FalseNegatives

Gets or sets the number of incorrectly scored negative examples.

Declaration
public int FalseNegatives { get; set; }
Property Value
Type Description
System.Int32
View Source

FalsePositives

Gets or sets the number of incorrectly scored positive examples.

Declaration
public int FalsePositives { get; set; }
Property Value
Type Description
System.Int32
View Source

FScore

Returns the F Score of the model.

The F Score determines the tradeoff between higher prediction confidence and reducing false negative predictions. (Higher is better).

Declaration
public double FScore { get; }
Property Value
Type Description
System.Double
View Source

MeanAbsError

Gets or sets the mean absolute error.

Declaration
public double MeanAbsError { get; set; }
Property Value
Type Description
System.Double
View Source

MSE

Gets or sets the mean squared error of the predictions.

Declaration
public double MSE { get; set; }
Property Value
Type Description
System.Double
View Source

NormRMSE

Gets or sets the normalised RMSE.

Declaration
public double NormRMSE { get; set; }
Property Value
Type Description
System.Double
View Source

Precision

Gets the Precision of the model.

A higher precision indicates the model has a higher positive prediction confidence. Also known as the Positive-Predictive-Value (PPV).

Declaration
public double Precision { get; }
Property Value
Type Description
System.Double
View Source

Recall

Gets the Recall of the model.

A higher recall indicates the model has scored better on reducing false negative predictions. Also known as the Sensitivity or True-Positive-Rate (TPR).

Declaration
public double Recall { get; }
Property Value
Type Description
System.Double
View Source

RMSE

Gets or sets the Root Mean Squared Error of the predictions.

Declaration
public double RMSE { get; set; }
Property Value
Type Description
System.Double
View Source

Specificity

Gets the Specificity of the model.

A higher value indicates the model has scored better at classifying negative examples, otherwise known as the True-Negative-Rate (TNR).

Declaration
public double Specificity { get; }
Property Value
Type Description
System.Double
View Source

SSE

Gets or sets the sum of squared errors of the predictions.

Declaration
public double SSE { get; set; }
Property Value
Type Description
System.Double
View Source

TotalNegatives

Gets or sets the total number of negative examples.

Declaration
public int TotalNegatives { get; set; }
Property Value
Type Description
System.Int32
View Source

TotalPositives

Gets or sets the total number of positive examples.

Declaration
public int TotalPositives { get; set; }
Property Value
Type Description
System.Int32
View Source

TrueNegatives

Gets or sets the number of correctly scored negative examples.

Declaration
public int TrueNegatives { get; set; }
Property Value
Type Description
System.Int32
View Source

TruePositives

Gets or sets the number of correctly scored positive examples.

Declaration
public int TruePositives { get; set; }
Property Value
Type Description
System.Int32

Methods

View Source

CombineScores(Score[])

Combines and averages metrics across all the given scores.

Declaration
public static Score CombineScores(params Score[] scores)
Parameters
Type Name Description
Score[] scores

Scores.

Returns
Type Description
Score
View Source

ComputeCoefRMSE(Vector, Vector)

Computes the Coefficient of Variation of the Root Mean Squared Error for the given inputs.

Declaration
public static double ComputeCoefRMSE(Vector y1, Vector y2)
Parameters
Type Name Description
Vector y1

Predicted values.

Vector y2

Actual values.

Returns
Type Description
System.Double

Double.

View Source

ComputeCrossEntropy(Vector, Vector)

Computes the Cross Entropy Loss for the given inputs.

Declaration
public static double ComputeCrossEntropy(Vector y1, Vector y2)
Parameters
Type Name Description
Vector y1

Predicted values.

Vector y2

Actual values.

Returns
Type Description
System.Double
View Source

ComputeMeanError(Vector, Vector)

Computes the Mean Absolute Error for the given inputs.

Declaration
public static double ComputeMeanError(Vector y1, Vector y2)
Parameters
Type Name Description
Vector y1

Predicted values.

Vector y2

Actual values.

Returns
Type Description
System.Double
View Source

ComputeMSE(Vector, Vector)

Computes the Mean Squared Error of the given inputs.

Declaration
public static double ComputeMSE(Vector y1, Vector y2)
Parameters
Type Name Description
Vector y1

Predicted values.

Vector y2

Actual values.

Returns
Type Description
System.Double

Double.

View Source

ComputeNormRMSE(Vector, Vector)

Computes the Normalized Root Mean Squared Error for the given inputs.

Declaration
public static double ComputeNormRMSE(Vector y1, Vector y2)
Parameters
Type Name Description
Vector y1

Predicted values.

Vector y2

Actual values.

Returns
Type Description
System.Double

Double.

View Source

ComputeRMSE(Vector, Vector)

Computes the Root Mean Squared Error for the given inputs.

Declaration
public static double ComputeRMSE(Vector y1, Vector y2)
Parameters
Type Name Description
Vector y1

Predicted values.

Vector y2

Actual values.

Returns
Type Description
System.Double

Double.

View Source

ComputeSSE(Vector, Vector)

Computes the Mean Squared Error of the given inputs.

Declaration
public static double ComputeSSE(Vector y1, Vector y2)
Parameters
Type Name Description
Vector y1

Predicted values.

Vector y2

Actual values.

Returns
Type Description
System.Double

Double.

View Source

ScorePredictions(Vector, Vector, Double, Double)

Scores a set of predictions against the actual values.

Declaration
public static Score ScorePredictions(Vector predictions, Vector actual, double truthLabel = 1, double falseLabel = -1)
Parameters
Type Name Description
Vector predictions

Predicted values.

Vector actual

Actual values.

System.Double truthLabel

(Optional) the truth label in the actual vector.

System.Double falseLabel

(Optional) the false label in the actual vector.

Returns
Type Description
Score
View Source

ToString()

Returns a string representation of the current Score object.

Declaration
public override string ToString()
Returns
Type Description
System.String
Overrides
System.Object.ToString()
  • View Source
©2017 — Seth Juarez
numl v0.9.20-beta
MIT License
docs by docfx